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Near-infrared spectroscopy (NIRS) can provide the hemodynamics information based on the
hemoglobin concentration representing the blood oxygen metabolism of the cerebral cortical,
which can be deployed for the cerebral function study. However, NIRS-based cerebral function
detection accuracy can be significantly influenced by the physiological activities such as cardic
cycle, respiration, spontaneous low-frequency oscillation and ultra-low frequency oscillation. The
distribution difference of the capillary, artery and vein leads to the heterogeneity feature of the
cerebral tissues. In the case that the heterogeneity is not serious, good detection accuracy and
stable performance can be achieved through the regression analysis as the reference signal can
well represent the interference in the measurement signal when conducting the multi-distance
measurement approach. The direct use of the reference signal to estimate the interference is not
able to achieve good performance in the case that the heterogeneity is serious. In this study, the
cerebral function activity signal is extracted using recursive least square (RLS) method based on
the multi-distance measurement method in which the reference signal is processed by ensemble
empirical mode decomposition (EEMD) algorithm. The temporal and dimensional correlation of
the neighboring sampling values are applied to estimate the interference in the measurement
signal. Monte Carlo simulation based on a heterogeneous model is adopted here to investigate the
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effectiveness of this methodology. The results show that this methodology can effectively suppress
the physiological interference and improve the detection accuracy of cerebral activity signal.

Keywords: Ensemble empirical mode decomposition; recursive least square methods; physiolog-

ical interference; heterogeneous distribution.

1. Introduction

Continuous-wave Near-Infrared spectroscopy (NIRS)
which utilizes a constant-frequency or low-frequency
modulated diode as the light source has been widely
used in obtaining hemodynamic information of oxy-
hemoglobin, deoxyhemoglobin, etc."™ The pho-
todiode is often used as the detector. Compared to
other cerebral function testing technologies such
as electroencephalograph (EEG), magnetoenceph-
alography (MEG), positron emission tomography
(PET) and functional magnetic resonance imaging
(fMRI), continuous-wave NIRS has shown great
capability in various cerebral activity signal detec-
tion with advantages of simple construction, low-
cost and easily realized miniaturization.* However,
the detection accuracy of NIRS cerebral function
can be significantly influenced by the physiological
activities.”

In recent years, many international research
groups have devoted a great deal of effort to
studying physiological interference issues.’” Physi-
ological disturbances include cardiac cycle, respira-
tion, spontaneous low frequency oscillation, and
ultra-low frequency oscillation.® The sources of its
effects are two-fold. One is the physiological dis-
turbance in the outer cerebral tissue such as the
scalp, skull and cerebrospinal fluid. The other is the
physiological disturbance in deep cerebral tissue
such as cerebral gray matter and white matter.’
The physiological interferences are therefore also
referred to as global disturbances or systemic
physiological disturbances.

To deal with this type of interference effectively,
the following four solutions have drawn wide at-
tention in the international community: First,
based on adaptive filtering approach, the noise ef-
fect is suppressed with the help of auxiliary test
equipment. For example, the signal that char-
acterizes heartbeat and respiration is collected
through the instruments such as blood pressure
monitor, respirometer,'’ spirometer, carbon dioxide
analyzer and pulse oximeter.!! The received signal
can be used as reference signal to eliminate the

disturbance using least mean square algorithm and
Kalman filter algorithm. Second, using a prior fre-
quency (cardiac cycle, ~1 Hz; respiration, ~ 0.25 Hz;
low frequency oscillation, ~0.1 Hz), quasi-sinusoidal
signal is regarded as the noise component, and
the interference is tracked and then removed
through the linear adaptive model and Kalman
filter algorithm.'? Third, considering the cerebral
function activity has regional characteristics and
the physiological interference has global character-
istics, subtraction between the measured signals from
the active and inactive regions can separate the
cerebral function signals from the interference
signals. The typical theory includes principal com-
ponent analysis (PCA)'® and independent compo-
nent analysis (ICA).!" Fourth, the multi-distance
measurement method consisting of pairs of light
source-detectors is wused: the close-separation
source-detector pair is used as the reference signal,
the far source-detector pair is used to acquire the
synthetic signal containing a target signal and the
interference, an adaptive filter model'>'¢ is con-
structed for the inhibition of interference. The
above methods inhibit the physiological interference
and obtain a good noise suppression effect to a
certain extent but pay insufficient attention to the
heterogeneity of cerebral tissue.

In 2008, Saager et al. studied the heterogeneity
of cerebral tissue based on the multi-distance
measurement methods.!” Research shows that 90%
of subjects have the cerebral tissue without serious
heterogeneity, while the other 10% of subjects
show significant heterogeneity. At this point,
there are some differences in the distribution of
capillaries, arteries and veins in different parts of
the cerebral tissue, and the traditional stratified
cerebral tissue model is ineffective. In the near-in-
frared cerebral function tests, physiological dis-
turbances come from the different physiological
activities, which may have multiple components.
When the nonuniformity of cerebral tissue is seri-
ous, different physiological activities will lead to
different physiological disturbances in different
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positions. For this situation, a more viable solution
is to separately estimate the different types of
interferences. One way is to obtain a reference
signal for each physiological disturbance via a
blood pressure monitor, a respirometer, etc., and
then to track different physiological disturbances
using Kalman filtering, but this method requires
additional equipments. Another method is to use
multiple prior sin/cos signals as the reference sig-
nals of physiological interference to estimate the
physiological interference by Kalman filtering, but
this needs the prior knowledge of the frequency
information of the physiological interference of the
subjects. However, it is often hard for implemen-
tation in practice due to individual differences.

Considering multi-component characteristics of
physiological disturbance and the uneven distribu-
tion of interfering components, a new method based
on multi-distance measurement is proposed to
improve the cerebral function detection accuracy. In
this study, the near-spacing detector is used to ac-
quire the extra cerebral tissue synthetic signals that
are mainly caused by the physiological interference.
The far-spacing signals acquired from far-detector
are sufficiently sensitive to brain activity. The near
channel signal is treated as the reference signal and
is decomposed into a series of simple intrinsic mode
functions using ensemble empirical mode decom-
position (EEMD). The intrinsic mode functions
have good instantaneous frequency characteristics
and are suitable for nonlinear nonstationary signal
analysis. The temporal correlation of neighboring
sampling values is studied, and the estimated points
are used as the center for smoothing processing. The
physiological interference is further estimated using
the recursive least square (RLS) algorithm. Monte
Carlo simulation results show that this algorithm
can effectively inhibit physiological interference and
improve the detection accuracy of cerebral activity
signal.

2. Theory
2.1. EEMD

Empirical mode decomposition (EMD), as an
adaptive time-frequency analysis method, is widely
used in biomedical signal processing and is espe-
cially suitable for analyzing nonlinear and non-
stationary signals.'® However, there are some
shortcomings in the application of EMD. One of the

main drawbacks is the existence of serious mode
mixing phenomenon in EMD, which leads to
receiving different time-scale or similar time-scale
information in the intrinsic mode function compo-
nents.!” The mode mixing in EMD makes the
physical meaning of the individual intrinsic mode
function unclear. In order to overcome the mode
mixing problems, Huang et al.? propose the EEMD
by adding a white noise to the original signal. As the
white noise distributes uniformly in the whole time-
frequency space, the problem of mode mixing can be
avoided by adding the white noise signal to make
the frequency distribution of the synthetic signal
uniform.

Denote the measurement of oxyhemoglobin,
deoxyhemoglobin concentration change x(t), white
noise series are added with the zero mean and
constant variance. The signal is then decomposed
into IMFs using EMD. Repeat the same procedure
with different white noise series each time and adopt
the means of the ensemble corresponding IMFs to
avoid the white noise effect to achieve the final IMF
components.

1 M
cj(k) = 37 Z ¢ii(t), (1)

where ¢;(t) is the jth IMF component achieved

using EEMD. ¢; ;(t) is the jth IMF component by

adding white noise series at the ith time, 1 <17 < M.
The final results using EEMD are as follows:

N
zh(t) = Y ei(t) +(8), (2)
i=1
where 7(t) is the final residue component describing
the signal average trend. N is a positive integer
describing the total number of the IMF components
using EEMD.

2.2. EEMD-BRLS

The signal z(k) is the A[HbO,] or A[HHDb] acquired
from the short-distance measurement S-D1 at in-
stant k£ and is used to be decomposed for multiple
components. The decomposed IMF components are
achieved by EEMD. The first dimension is the order
1 of the EEMD decomposition, which corresponds to
time-scales. The larger the value of i is, the smaller
the time-scale of the IMF component is. The other
dimension is the time series k, which indicates the
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signal changes with time. In the previous study, the
EMD-RLS algorithm?!' considers only the relation-
ship between IMF components of different order at
the current moment k and physiological interference
and does not take into account that the signals of
the adjacent sampling points are correlated.

In order to capture the correlation information in
physiological disturbance estimation and achieve
better estimation results, we explore the method of
EEMD and bidimensional RLS (EEMD-BRLS) by
investigating and analyzing the tapped delay line
filter. The block diagram of EEMD-BRLS is shown
in Fig. 1. For a specific time k, we select the window
of length 2M + 1 with the time k as the center. The
two-dimensional weight w;, ;(k) as described in
Eq. (3) describes the relationship between IMF
components and physiological disturbances. This
process is similar to smoothing operations in signal
processing and is a posterior form of estimation
since observed data after the point of interest are
used for estimation. As more associated data accu-
mulates around the estimated point, smoothing
operation tends to give better estimation than fil-
tering. Here, the estimate of physiological distur-
bance can be expressed as

N kM

i(k) = Z Z w j(k)ei(k — 7), (3)

i=1 j=k—M

where M is the half-window size, N is the decom-
position order for EEMD. Equation (3) takes into
account the correlation between the IMF order and
time, so it is called EEMD-BRLS. The bidirectional

> Yy

7&/ e(k)=S(k)_iJi(k)

A -
ﬁ ﬂ/ B A[HbO,] or A[HHb]
f ‘ Calculated with EEMD-BRLS
®
| k)
|
®
Jn(k)

Block diagram of global interference denoising using EEMD-BRLS algorithm in multi-distance fNIRS measurement.

weight can be interpreted as the 4;;, IMF component
¢;(k) passing through an FIR filter of length 2M + 1
with coeflicient w; ;(k). Therefore, it is equivalent to
a filter bank consisting of N filters, each of which
processes one IMF component and the final result is
the sum of the outputs of all the filters. Compared
with EEMD-RLS, EEMD-BRLS considers the cor-
relation between adjacent sampling points at the
expense of increased computational complexity.

Similar to EEMD-RLS, the cost function is the
weighted square sum as follows:

k N  k+M 2

Z Z w; j(k),ci(k— j)

n=1 i=1 j=k—M
(4)

The parameter 0 < x <1 is the forgetting factor
that controls the memory span of the algorithm.
Differentiate the equation with respect to w; ;(k),
set it to zero, we can get,

N k+M
Z Z Wy (B) Ry j(K) = Dy 5(K),
1=1 m=k—M

i=1,...,N, j=k—M,....k+ M, (5

where R(l,4;m, j) and p; ;(k) are
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If (2M + 1)N equations are considered, we can get
the equation below

R(k)w(k) = p(k), (8)
where
R],]:—]\J‘—;\I(k‘) RLI:—]\H»L?}W(IC) . RN,];}W,—AI(IC)
Rl,l:*;"\l.fl\r[Jrl(k) RI.IZ*A‘I‘FI,*AI‘FI(]C) RsV,l:*s\I,fArI+1(k)
R(k)= : : - : )
RI,N%AMI‘AM(IC) RLN:—AM+1,J\J(I€) . RZ\“',N:]\[‘J[(k)
(9)
i ’wl,—M(k)
Wy, — M 1(k)
w(k) = U (10)
L wN,M(k)
[ p1_m(k)
p1,7M+1(k)
p(k) = : : (11)
L pN,M(k)

using Eq. (8), if the R(k) is not singular, w(k) can
be calculated as

w(k) = R (k)p(k). (12)

The dimension of R(k) is (2M + 1)N x (2M +
1)N. Given w(k), the cerebral function signal can
be extracted based on the matrix inversion lemma.

In the EEMD-BRLS algorithm, a larger M will
improve the performance of the estimation because
more time-related signals are considered. But once
M reaches a certain value, the system performance
cannot be improved significantly, even though the
amount of computing has increased dramatically.
Therefore, in practical application, the half-window
length M is selected according to specific system
requirement.

3. Monte Carlo Simulation

Our study used multi-distance probe arrangement
and two wavelengths of the light source (750 nm
and 830nm). A five-layer slab model consisting of
scalp (sc), skull (sk), cerebrospinal fluid (csf), gray
matter (gm) and white matter (wm) was used as a
human adult head model (Fig. 2). We adopt par-
ticular source-detector separations to distinguish
between processes occurring at different tissue
depths, as indicated by the ‘banana-shaped’ regions

Detector 2
Dector 1

Source \
N

Scalp

Skull\

Cerebrospinal fluid

Gray matter &
white matter

Fig. 2.  Schematic of a multi-distance fNIRS probe arrange-
ment together with the five layer model of the head.

that encompass statistically determined photon
paths. The short separation with source-detectorl is
used to probe the superficial tissue layer, and the
long distance with source-detector2 to probe the
deeper tissue layer. The short source-detector
spacing was set to 10 mm and the long source-de-
tector spacing was set to 40 mm. The generation of
the NIRS time series was conducted with Monte
Carlo simulations and standard analysis of func-
tional hemodynamic changes.

The simulated cerebral function activity process
is based on the block design experiment paradigm.®
The experiment is divided into the Stimu Phase and
the Rest Phase (Fig. 3). The Stimu and Rest phases
both lasted 20 s and alternated. The entire test time
is 200s. As shown in Fig. 3, sampling rate is 10 Hz,
the entire measurement process collects 2000 points
of data. For each layer of cerebral tissue, both car-
diac cycle and respiratory-induced physiological
disturbances are simulated, and the cerebral Stimu
Phase is achieved through an increase in HbO,
concentration and a decrease in HHb concentration.

In the process of the simulation, the scattering
coefficient of cerebral tissue in each layer is kept
constant, and the change of light intensity is de-
termined by the change of absorption coefficient.
Therefore, the change of HbO, and HHb concen-
tration (A[HbO,] and A[HHD]) can be calculated
with the modified Lambert—Beer law as raw mea-
surements of hemodynamic parameters over time
during cerebral functional activity. In order to
eliminate the physiological interference, we can
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Fig. 3. Block-design paradigm of cerebral activity measurement for Monte Carlo simulation.

obtain the data of A[HbO,] and A[HHb] by using
the signal extraction method to process the raw
data. Since the experimental process is performed
using Monte Carlo simulations, the true A[HbO,]
and A[HHD] are pre-known. By comparing the true
values, raw measurement data and the extracted
values of A[HbO,| and A[HHDb], the validity of the
cerebral function signal extraction method can be
quantitatively analyzed and compared.

4. Results

Since the consideration of both different orders of
IMF component and temporal correlation guaran-
tees the EEMD-BRLS algorithm with high accura-
cy, we first analyzed the effects of the algorithm in
testing cerebral function. Then, targeting the issue
of different influences from various physiological
activities on reference signal and synthetic signal
caused by heterogeneity in the brain, the perfor-
mances of RLS, EEMD-RLS and EEMD-BRLS
algorithms are compared and analyzed using the
mean squared errors (MSEs) from statistical results.

Simulation experiment is based on the five-layer
cerebral tissue model suggested in earlier studies,
and the Monte Carlo simulation program. We uti-
lize the block design experimental paradigm of ce-
rebral function, and take physiological interferences
caused by cardiac cycle (frequency of 1.1Hz),
breathing (frequency of 0.18 Hz), low frequency os-
cillation (frequency of 0.1 Hz), as well as ultra-low
frequency oscillation (frequency of 0.04Hz) into
consideration. Physiological interferences are
appended to changes in hemodynamics of cerebral
tissues, then, white noise with mean value of 0 and
1/100 standard deviation is generated to simulate
random noise from actual measurements. Finally,
the information of optical density changes is gath-
ered through Monte Carlo simulation. The value of
the length of half-window is set as 5 considering the

complexity of the algorithm in order to get better
simulation results.

Concentration changes of oxyhemoglobin recon-
structed with EEMD-BRLS algorithm is shown
in Fig. 4. Results are represented in 200s time ser-
ies on the left, and the block averages are on the
right. Figures 4(a) and 4(b) are acquired with near-
separation detector, while Figs. 4(c) and 4(d) are
acquired with far-separation detector. Based on the
multi-distance measurement and EEMD-BRLS
algorithm, changes in oxyhemoglobin concentration
as well as the coherent averages are represented in
Figs. 4(e) and 4(f). After partial volume effect
(PVE) compensation of changes in oxyhemoglobin
concentration collected with the EEMD-BRLS
algorithm, results and block averages are shown in
Figs. 4(g) and 4(h), in which the full line represents
extracted value, and the dashed line represents the
actual value.

Concentration changes of deoxyhemoglobin
reconstructed with EEMD-BRLS algorithm are
shown in Fig. 5. Results are represented in 200s
time series on the left, and coherent averages are
on the right. Figures 5(a) and 5(b) are acquired
with near-end detector, while Figs. 5(c) and 5(d)
are acquired with remote detector. Based on multi-
distance measurement and EEMD-BRLS algorithm,
changes in deoxyhemoglobin concentration as well as
the coherent averages are represented in Figs. 5(e)
and 5(f). After PVE compensation of changes in
deoxyhemoglobin concentration are collected with
the EEMD-BRLS algorithm, results and coherent
averages are shown in Figs. 5(g) and 5(h), in which
the full line represents extracted value, and the
dashed line represents the actual value.

Observing Figs. 4 and 5, we noticed that there is
obvious physiological interference of synthetic sig-
nals in Figs. 4(a) and 4(c), as well as in Figs. 5(a)
and 5(c), along with their block averages. Extracted
changes in hemodynamic parameters and actual
changes in hemodynamics are quite close from
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Fig. 4.

Figs. 4(g) and 4(h), as well as Figs. 5(g) and 5(h).
From these results, we knew that utilizing the
EEMD-BRLS algorithm based on multi-distance
measurement could suppress physiological inter-
ferences and effectively extract cerebral function
signals.

Under normal conditions, heterogeneity of he-
modynamic parameters in extracerebral tissues and
deep cerebral cortex is not severe, thus adaptive
filtering based on multi-distance measurement can
reduce physiological interference very effectively.
Saager et al. use both linear and circular light
source-detector layouts to study the heterogeneity
of local cerebral tissues, and observed obvious het-
erogeneity in the cerebral tissues in 10% of testers.'”
Considering the fact that degree of disturbance on
different cerebral regions is distinct from diverse
physiological activities because of the heterogeneity
in cerebral tissues, percentage of various physio-
logical activities in reference signal and synthetic
signal is changed during simulation. Since the
effects from different interferences are similar, we

Concentration changes of HbO, extracted with EEMD-BRLS.

will only study the example of heartbeat interfer-
ence. Although heartbeat is global physiological
interference, heterogeneity of cerebral tissues resul-
ted from differences in the volume, distribution and
shape of blood vessels could lead to nonuniform
influences by heartbeat on different regions. Fo-
cusing on control parameters in previous studies, we
assume that disturbance by heartbeat in the region
detected by near-separation optical detector is sig-
nificantly larger than that in any other region, and
the exceeding amount is measured in percentage.
Zero percent represents the same amount of heart-
beat interference compared to other tissues, which
means homogeneity, while 100% means the inter-
ference from heartbeat in this region is one-fold
higher than other tissues, and the heterogeneity is
severe.

During Monte Carlo simulation, control para-
meters of physiological disturbance amplitudes
among different tissues (amplitude control para-
meters) are valued with 20% intervals, and the
MSE is obtained by taking the average of 100
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Fig. 5. Concentration changes of HHb extracted with EEMD-BRLS.

independent experiments. The simulation results
are shown in Fig. 6, where Fig. 6(a) contains the
MSE of concentration changes of oxyhemoglobin,
and Fig. 6(b) contains the MSE of concentration
changes of deoxyhemoglobin. From Fig. 6(a), we
conclude from the MSE value that the RLS algo-
rithm could most accurately perform cerebral
function detection while the amplitude control pa-
rameter remain unchanged (cerebral tissues have
ideal homogeneity). When the amplitude control
parameter increases (tissues begin to show severe
heterogeneity), the effectiveness of RLS algorithm
deteriorates; however, it does not affect EEMD-RLS
or EEMD-BRLS algorithm significantly, showing
the great robustness of the latter two algorithms.
Decomposing reference signals, assigning different
values to various IMF components, and adjusting
weights self-adaptively, where unrelated IMF com-
ponents are assigned with small weights and large
weights are assigned to strongly related compo-
nents, these characteristics of the EEMD earned
better interference estimations for the algorithm.

During optimization, EEMD-BRLS took the rele-
vance of adjacent time of each IMF component
into consideration, and used smoothing to process
algorithms, thus the MSE calculated with EEMD-
BRLS is significantly smaller than that with
EEMD-RLS algorithm. Considering Fig. 6(b), the
trend of RLS algorithm is similar to that in Fig. 6(a),
and EEMD-BRLS algorithm also performed
better than the EEMD-RLS algorithm. Compared
to the results of changes in concentration of oxy-
hemoglobin, RLS algorithm performed very well
compared to the other two EEMD methods when
the change in amplitude control parameters is less
than around 45% in the deoxyhemoglobin result.
There are two reasons for this phenomenon, the
first is that physiological interference has smaller
amplitudes for the detection of oxyhemoglobin,
which means heterogeneity has far less effect on the
detection of change in concentration of oxyhemo-
globin than that on deoxyhemoglobin; secondly,
although EEMD decomposition can provide intrin-
sic mode functions of different simple components,
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Fig. 6. MSE versus the variation of amplitude control parameters for three different algorithms. (a) The MSE of concentration
changes of oxyhemoglobin and (b) the MSE of concentration changes of deoxyhemoglobin.

fluctuations may occur during decomposition
process, and could bring errors to the ultimate op-
timization results. Thus, when the tissue heteroge-
neity is not severe, advantages of EEMD-RLS and
EEMD-BRLS algorithms could not offset the fluc-
tuations during EEMD decomposition and could
lead to results worse than the RLS algorithm.

To analyze the performance of EEMD-BRLS
algorithm with different half-window lengths, sta-
tistical analyses are performed on MSEs when half-
window length (M) ranged from 1 to 5, and the
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result is shown in Fig. 7. Corresponding MSE values
with alternating concentrations of oxygenated and
deoxyhemoglobin are plotted in Figs. 7(a) and 7(b),
respectively. Similar conclusions are drawn from
both figures, the larger the M is, the smaller the
MSE value is, which means the better results are
obtained when half-window length is large. How-
ever, large M values do not necessarily mean good
results. Our simulation results showed that when M
is larger than 5, the trend for smaller MSE value
slows down, and when M is larger than 8, MSE does
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Fig. 7. Performance comparations of EEMD-BRLS in different half-window length M. (a) The MSE of concentration changes of
oxyhemoglobin and (b) the MSE of concentration changes of deoxyhemoglobin.
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not significantly decrease. Overall, considering the
complexity of algorithms, when studying the ex-
traction of cerebral function signals, half-window
length of 5 is the most appropriate, and MSE value
increases along with the increase in amplitude con-
trol parameters; however, EEMD-BRLS algorithm
has better robustness compared to RLS algorithm.

5. Discussion

Physiological interference can greatly degrade the
performance of fNIRS measurement of evoked brain
activity response. Many different methodologies
have been explored to resolve this problem. One of
the approaches is to identify and separate the in-
terference components in fNIRS study including
using auxiliary physiological measurements and to
analyze the signal with an adaptive filtering algo-
rithm. The instruments such as electrocardiogram
(ECG), the pulse oximeter, chest band respirome-
ter, spirometer and capnograph can be used to
achieve auxiliary physiological measurements. This
method has the drawback of the indispensability of
additional equipment. Another approach adopted
adaptive filtering methods to separate the brain
activity response and the physiological interference
using the priori frequencies. The priori frequencies
(e.g., the cardiac, ~ 1 Hz; respiratory, ~ 0.25 Hz; and
Mayer wave frequency, ~ 0.1Hz) have also been
assumed to be the sine/cosine terms.'? However, this
methodology is not appropriate due to individual
difference. Thus, recently multi-distance measure-
ment and adaptive filtering have been proposed to
suppress the physiological interference and the ad-
vantage of this method is convenient and effective to
extract the signal for real-time application.

It should be noted that in the multi-distance
measurement method, the performance of adaptive
filtering declines due to heterogeneous problem. In
this current paper, we employ the time-frequency
analyzing method to decompose the reference signal
and then using RLS algorithm to estimate the brain
activity response. The accuracy of the EEMD-RLS
algorithm and EEMD-BRLS algorithm depends on
the reference signal decomposition. Therefore, this
paper uses the improved EMD algorithm EEMD
to improve the accuracy of the decomposition.
In addition, the EEMD-RLS and EEMD-BRLS
algorithms have no obvious differences when the
tissue heterogeneity is not serious, while the RLS

algorithm is easy to implement and can be utilized
for real-time signal processing without EEMD pro-
cessing procedure. The EEMD-RLS and EEMD-
BRLS algorithms can significantly improve system
robustness when the distributions of disruptions
caused by different physiological activities in dif-
ferent regions are not consistent.

An important matter that should be considered
here is the EEMD-RLS and EEMD-BRLS algo-
rithms can not only conduct the cerebral function
signals detection, but also provide the extracerebral
hemodynamic changes for cerebral function study
as they can provide the time-frequency information
of the outer layer of the brain via EEMD. During
the cerebral stimulation, the hemodynamic para-
meters of extracerebral layers are not always inde-
pendent of the response to the cerebral cortex. For
example, the cardiac cycle increase during finger
motility experiments increases hemodynamic cor-
relations between the outer layer of the cerebral and
the cerebral cortex, which may lead to over-fitting
in cerebral function testing via multiple-range
measurements. The cerebral function signals can
be extracted by EEMD-RLS and EEMD-BRLS
approaches. At the same time, the information of
frequency components regarding the outer layers of
cerebral tissue can be achieved via EEMD method
to further analyze the hemodynamics of the outer
layer of cerebral tissue.

A truly rigorous evaluation of this method
requires the simulation of the heterogeneous head
model, which unfortunately, is not easy to realize
for the in wvivo experiments as such experiments
need the selection of the heterogeneous subjects.
Meanwhile, the PVE effect in vivo cannot be exactly
compensated and the quantitative comparison of
the recovery response and the true response of brain
activity is difficult. Thus, the control parameters
are altered with fixed steps to imitate the hetero-
geneous head tissue. Monte Carlo simulation is
further implemented for quantitative analysis here
as the preliminary study. As for the deep study of
this method in wvivo with practical NIRS measure-
ment, this will be the subject of our on-going re-
search and will be published in due course.

6. Conclusions

In this paper, multi-distance measurement method
has been investigated regarding eliminating the
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physiological interference for cerebral function
signals detection. An EEMD-BRLS algorithm is
proposed based on the EEMD optimization. Con-
sidering the temporal correlation of the neighboring
sampling values, the EEMD-BRLS algorithm is
obtained by performing the smoothing operation
centered on the estimated points. The results of
EEMD-BRLS algorithm are analyzed based on a
five-layer tissue model and Monte Carlo simulation.
In addition, considering the heterogeneity of cere-
bral tissue, RLS adaptive filtering, EEMD-RLS and
EEMD-BRLS algorithms are compared, respec-
tively, by adjusting the different proportions of
various interferences in the reference signal and the
expected signal. The simulation results show that
EEMD-BRLS algorithm and EEMD-RLS algorithm
have higher estimation accuracy than RLS algo-
rithm, and EEMD-BRLS is superior to EEMD-RLS
algorithm when various interferences have different
proportions in reference signal and expected signal.
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